bernoulli operational matrix method for system of linear volterra integral equations
نویسندگان
چکیده
in this paper, the numerical technique based on hybrid bernoulli and block-pulse functions has been developed to approximate the solution of system of linear volterra integral equations. system of volterra integral equations arose in many physical problems such as elastodynamic, quasi-static visco-elasticity and magneto-electro-elastic dynamic problems. these functions are formed by the hybridization of bernoulli polynomials and block-pulse functions which are orthonormal and have compact support on $[0, 1]$. by these orthonormal bases we drove new operational matrix which was a sparse matrix. by use of this new operational matrix we reduces the system of integral equations to a system of linear algebraic equations that can be solved easily by any usual numerical method. the numerical results obtained by the presented method have been compared with some existed methods and they have been in good agreement with the analytical solutions and other methods that prove the profit and efficiency of the proposed method.
منابع مشابه
Bernoulli operational matrix method for system of linear Volterra integral equations
In this paper, the numerical technique based on hybrid Bernoulli and Block-Pulse functions has been developed to approximate the solution of system of linear Volterra integral equations. System of Volterra integral equations arose in many physical problems such as elastodynamic, quasi-static visco-elasticity and magneto-electro-elastic dynamic problems. These functions are formed by the hybridi...
متن کاملApproximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method
In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...
متن کاملApplication of Bernoulli wavelet method for numerical solution of fuzzy linear Volterra-Fredholm integral equations
This work, Bernoulli wavelet method is formed to solve nonlinear fuzzy Volterra-Fredholm integral equations. Bernoulli wavelets have been Created by dilation and translation of Bernoulli polynomials. First we introduce properties of Bernoulli wavelets and Bernoulli polynomials, and then we used it to transform the integral equations to the system of algebraic equations. We compared the result o...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملA finite difference method for the smooth solution of linear Volterra integral equations
The present paper proposes a fast numerical method for the linear Volterra integral equations withregular and weakly singular kernels having smooth solutions. This method is based on the approx-imation of the kernel, to simplify the integral operator and then discretization of the simpliedoperator using a forward dierence formula. To analyze and verify the accuracy of the method, weexamine samp...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
international journal of industrial mathematicsجلد ۸، شماره ۳، صفحات ۲۰۱-۲۰۷
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023